GETUIGENISSEN

Wat onze klanten zeggen?

Over ons

Onderdelen voor industriële automatisering

Xiamen Wusu Network Technology Co. Ltd. voorziet onze klanten van de industriële elektronica-onderdelen die ze nodig hebben, precies wanneer ze die nodig hebben. Wij zijn gespecialiseerd in volwassen, verouderde en afgedankte producten die u nergens anders zult vinden, en we houden defectengevoelige onderdelen op voorraad om de doorlooptijden te verkorten. Wij doen er alles aan om u de reserveonderdelen voor industriële automatisering te bezorgen die u nodig heeft, tegen een geweldige prijs. Neem vandaag nog contact op met ons team als u vragen heeft.

LEES VERDER
video

Fabrikanten

HETE PRODUCTEN

Enorme voorraadselectie!

Aarzel niet om op elk gewenst moment contact met ons op te nemen

LEES VERDER

Blogcentrum

July 16,2024
PLC comprehensive failure reasons

1 Grounding Problems   The grounding requirements for the PLC system are relatively strict. It is best to have an independent dedicated grounding system. Also, attention should be paid to the reliable grounding of other equipment related to the PLC.   When multiple circuit ground points are connected together, unexpected currents can flow, causing logic errors or damaging circuits.   The reason for different ground potentials is usually that the grounding points are separated too far in physical area. When devices that are far apart are connected by communication cables or sensors, the current between the cable and the ground will flow through the entire circuit. Even within a short distance, the load current of large equipment can change between its potential and the ground potential, or directly generate unpredictable currents through electromagnetic effects.     Between power supplies with improper grounding points, destructive currents may flow in the circuit, destroying equipment.   PLC systems generally use a single-point grounding method. In order to improve the ability to resist common-mode interference, shielded floating ground technology can be used for analog signals, that is, the shielding layer of the signal cable is grounded at one point, the signal loop is floating, and the insulation resistance with the ground should be no less than 50MΩ.     2 Interference handling     The industrial field environment is relatively harsh, with many high and low frequency interferences. These interferences are usually introduced into the PLC through the cables connected to the field equipment.     In addition to grounding measures, some anti-interference measures should be taken during the design, selection and installation of cables:   (1) Analog signals are small signals and are easily affected by external interference, so double-shielded cables should be used;   (2) Shielded cables should be used for high-speed pulse signals (such as pulse sensors, counting encoders, etc.) to prevent external interference and high-speed pulse signals from interfering with low-level signals;   (3) The communication cable between PLCs has a high frequency. Generally, the cable provided by the manufacturer should be selected. If the requirements are not high, a shielded twisted pair cable can be selected.   (4) Analog signal lines and DC signal lines cannot be routed in the same wire duct as AC signal lines;   (5) The shielded cables leading into and out of the control cabinet must be grounded and should not be directly connected to the equipment through the wiring terminals;   (6) AC signals, DC signals and analog signals cannot share the same cable, and power cables should be laid separately from signal cables.   (7) During on-site maintenance, the following methods can be used to resolve interference: using shielded cables for the affected lines and re-laying them; adding anti-interference filtering codes to the program.     3 Eliminate inter-wire capacitance to avoid false operation     There is capacitance between each conductor of the cable, and a qualified cable can limit this capacitance within a certain range.   Even if the cable is qualified, when the cable length exceeds a certain length, the capacitance between the lines will exceed the required value. When this cable is used for PLC input, the capacitance between the lines may cause the PLC to malfunction, resulting in many incomprehensible phenomena.   These phenomena are mainly manifested as: the wiring is correct, but there is no input to the PLC; the input that the PLC should have is not there, but the input that it should not have is there, that is, the PLC inputs interfere with each other. To solve this problem, you should do the following:     (1) Use cables with twisted cores;   (2) Try to shorten the length of the cable used;   (3) Use separate cables for inputs that interfere with each other;   (4) Use shielded cable.     4 Output module selection     Output modules are divided into transistor, bidirectional thyristor, and contact type:   (1) The transistor type has the fastest switching speed (generally 0.2ms), but the smallest load capacity, about 0.2~0.3A, 24VDC. It is suitable for equipment with fast switching and signal connection. It is generally connected to signals such as frequency conversion and DC devices. Attention should be paid to the impact of transistor leakage current on the load.   (2) The advantages of the thyristor type are that it has no contacts, has AC load characteristics, and has a small load capacity.   (3) Relay output has AC and DC load characteristics and large load capacity. In conventional control, relay contact type output is generally used first. The disadvantage is that the switching speed is slow, generally around 10ms, and it is not suitable for high-frequency switching applications.     5 Inverter overvoltage and overcurrent processing   (1) When the given speed is reduced to slow down the motor, the motor enters the regenerative braking state, and the energy fed back to the inverter by the motor is also high. This energy is stored in the filter capacitor, causing the voltage on the capacitor to increase and quickly reach the setting value of the DC overvoltage protection, causing the inverter to trip.   The solution is to add a braking resistor outside the inverter and use the resistor to consume the regenerative electric energy fed back to the DC side by the motor.   (2) The inverter is connected to multiple small motors. When an overcurrent fault occurs in one of the small motors, the inverter will issue an overcurrent fault alarm, causing the inverter to trip, thereby causing other normal small motors to stop working.   Solution: Install a 1:1 isolation transformer on the output side of the inverter. When one or more small motors have an overcurrent fault, the fault current will directly impact the transformer instead of the inverter, thus preventing the inverter from tripping. After the experiment, it works well and the previous fault of normal motors stopping has not occurred.     6 Inputs and outputs are labeled for easy maintenance   PLC controls a complex system. All you can see are two rows of staggered input and output relay terminals, corresponding indicator lights and PLC numbers, just like an integrated circuit with dozens of pins. Anyone who does not look at the schematic diagram to repair a faulty device will be helpless and the speed of finding the fault will be very slow. In view of this situation, we draw a table based on the electrical schematic diagram and stick it on the console or control cabinet of the equipment, indicating the electrical symbol and Chinese name corresponding to each PLC input and output terminal number, which is similar to the functional description of each pin of the integrated circuit.   With this input and output table, electricians who understand the operation process or are familiar with the ladder diagram of this equipment can start maintenance.   However, for those electricians who are not familiar with the operation process and cannot read ladder diagrams, they need to draw another table: PLC input and output logic function table. This table actually explains the logical correspondence between the input circuit (trigger element, associated element) and the output circuit (actuator) in most operation processes.   Practice has proved that if you can skillfully use the input-output correspondence table and the input-output logic function table, you can easily repair electrical faults without drawings.     7 Inferring Faults through Program Logic   There are many types of PLCs commonly used in industry today. For low-end PLCs, the ladder diagram instructions are similar. For mid- to high-end machines, such as S7-300, many programs are written using language tables.   Practical ladder diagrams must have Chinese symbol annotations, otherwise it will be difficult to read. If you can have a general understanding of the equipment process or operation process before reading the ladder diagram, it will seem easier.   If an electrical fault analysis is to be performed, the reverse search method or reverse reasoning method is generally used, that is, according to the input-output correspondence table, the corresponding PLC output relay is found from the fault point, and then the logical relationship that satisfies its action is reversed.   Experience shows that if one problem is found, the fault can be basically eliminated, because it is rare for two or more fault points to occur simultaneously in the equipment.     8 PLC self-fault judgment   Generally speaking, PLC is an extremely reliable device with a very low failure rate. The probability of damage to hardware such as PLC and CPU or software errors is almost zero. The PLC input point will hardly be damaged unless it is caused by strong electric intrusion. The normally open point of the PLC output relay will have a long contact life unless the peripheral load is short-circuited or the design is unreasonable, and the load current exceeds the rated range.   Therefore, when we look for electrical fault points, we should focus on the PLC's peripheral electrical components and not always suspect that there is a problem with the PLC hardware or program. This is very important for quickly repairing faulty equipment and resuming production.   Therefore, the electrical fault inspection and repair of the PLC control circuit discussed by the author does not focus on the PLC itself, but on the peripheral electrical components in the circuit controlled by the PLC.     9 Make full and reasonable use of software and hardware resources   (1) Instructions that do not participate in the control cycle or have been entered before the cycle do not need to be connected to the PLC;   (2) When multiple instructions control a task, they can be connected in parallel outside the PLC and then connected to an input point;   (3) Make full use of the PLC internal functional soft components and fully call the intermediate state to make the program complete and coherent and easy to develop. At the same time, it also reduces hardware investment and reduces costs;   (4) If conditions permit, it is best to make each output independent, which is convenient for control and inspection and also protects other output circuits; when an output point fails, it will only cause the corresponding output circuit to lose control;   (5) If the output is a forward/reverse controlled load, not only must the PLC internal program be interlocked, but measures must also be taken outside the PLC to prevent the load from moving in both directions;   (6) PLC emergency stop should be cut off using an external switch to ensure safety.     10 Other considerations   (1) Do not connect the AC power cord to the input terminal to avoid burning the PLC;   (2) The grounding terminal should be grounded independently and not connected in series with the grounding terminal of other equipment. The cross-sectional area of the grounding wire should not be less than 2mm²;   (3) The auxiliary power supply is small and can only drive low-power devices (photoelectric sensors, etc.);   (4) Some PLCs have a certain number of occupied points (i.e. empty address terminals), do not connect the wires;   (5) When there is no protection in the PLC output circuit, a protective device such as a fuse should be connected in series in the external circuit to prevent damage caused by load short circuit.

LEES VERDER
July 05,2024
Common Motor Failures and Inspection Maintenance

    Common Motor Failures   1.Abnormal startup or abnormal speed after startup 1)Stator circuit (power supply, switch, contactor, leads, windings) missing phase. 2)Rotor cage breakage (ring breakage, bar breakage). 3)Rotor rubbing against stator, or mechanical drag causing jamming. 4)Incorrect stator circuit wiring (winding polarity or star/delta configuration). 5)Low power supply voltage.   2.Overheating or smoking 1)Power aspect High or low voltage, or phase loss. 2)Motor itself Stator winding inter-turn or turn-to-turn short circuit or ground, rotor bar breakage or stator/rotor rubbing. 3)Load aspect Mechanical overload or jamming. 4)Ventilation and heat dissipation aspect High ambient temperature, excessive dirt on casing, blocked air ducts, damaged or improperly installed fan.   3.Bearing operating temperature is too high 1)High bearing running temperature Bearing running temperature should generally not exceed 95°C. 2)Improper, deteriorated, excessive, or inadequate lubricating oil. 3)Bearing wear, rust, spalling, inner or outer race running, or improper assembly of inner and outer covers. 4)Misalignment of couplings or over-tightened belts.   4.Abnormal noise or strong vibration 1)Stator-rotor rubbing or severe wear deformation of driven machinery. 2)Uneven foundation, weak base, or loose anchor bolts. 3)Coupling misalignment or bent shaft. 4)Rotor eccentricity, rotor imbalance, unbalanced driven machinery, or bearing eccentricity. 5)Oil shortage or damage to bearings. 6)Rotor bar breakage. 7)Phase loss or overloaded operation.     Motor Inspection   1.Pre-operation inspection 1)Check if the casing is clean, inspect for dust and dirt inside open motors. 2)Disconnect cables and terminal boards, measure winding resistance and insulation to ground. 3)Verify correct stator winding connection and power supply voltage as per nameplate. 4)Manually rotate motor rotor and drive system, check for obstructions and bearing lubrication. 5)Ensure ventilation system is unobstructed, and all fasteners are secure. 6)Check grounding of motor.   2.Operational inspection 1)During normal operation, current and voltage should not exceed rated values. Phase current imbalance should not exceed 10%, phase voltage imbalance should not exceed 5%, and allowable voltage fluctuation is within -5% to +5% of rated voltage, not to exceed 10%. 2)Ensure temperature measurement devices are working, temperature rise within specified range. 3)Normal sound and vibration, no abnormal odors. 4)Proper bearing lubrication, flexible rotation of oil ring. 5)Cooling system in good condition. 6)Clean surroundings without debris, leaks of water, oil, or air. 7)Protective covers, terminal boxes, grounding wires, control boxes intact.    Motor Maintenance   1)Keep motor surroundings clean and free of debris. 2)Regular inspection, address anomalies, record defects. 3)Prevent water or steam leaks around, avoiding motor dampness affecting insulation. 4)Regularly change lubricating oil, typically every 1000 hours for plain bearings, and 500 hours for roller bearings. 5)Periodically inspect insulation of standby motors, address non-compliance promptly.

LEES VERDER
June 20,2024
Hoe de Yaskawa-motor handmatig bedienen?

(1). Handmatige controlemethodeDe Yaskawa-aandrijving kan handmatige controle van de motorrotatie bereiken via het bedieningspaneel. De specifieke methode is als volgt:1. Open het bedieningspaneel en ga naar de handmatige modus.2. Stel eerst de frequentie in op 0 Hz en druk vervolgens op de startknop. De motor stopt op dit moment.3. Druk op de vooruit- of achteruitknop, de motor draait in de ingestelde richting.4. Het motortoerental kan worden aangepast door de frequentie in te stellen.Opmerking: Wanneer u de motorrotatie handmatig regelt, moet u helder nadenken om de veiligheid ervan te garanderen. (2). Voorzorgsmaatregelen1. Voordat u handmatige bediening uitvoert, moet u ervoor zorgen dat de apparatuur correct elektrisch is aangesloten en mechanisch is geïnstalleerd.2. Begrijp eerst de basisbedieningsmethoden van de apparatuur en bedien deze vervolgens handmatig om de veiligheid te garanderen.3. Wanneer u de motorsnelheid handmatig aanpast, moet u de frequentie geleidelijk verhogen of verlagen om te voorkomen dat frequente veranderingen overbelasting veroorzaken en de levensduur van de apparatuur beïnvloeden.4. Stop na handmatige bediening de rotatie van de motor grondig en schakel het bedieningspaneel uit om veiligheidsrisico's te voorkomen. (3). Gebruikelijke problemen1. Het is mogelijk dat de motor tijdens handmatige bediening niet gelijkmatig draait, wat te wijten kan zijn aan onjuiste elektrische aansluitingen of overmatige motorbelasting.2. Lawaai en ongebruikelijke geuren tijdens handmatige bediening kunnen wijzen op mechanische storingen in de apparatuur.3. Als het bedieningspaneel na het starten niet start of de frequentie niet aanpast, kan dit te wijten zijn aan een storing in het bedieningspaneel zelf.4. Als de bovenstaande problemen niet kunnen worden opgelost, neem dan onmiddellijk contact op met onderhoudstechnici van de apparatuur voor hulp. Kortom, de Yaskawa-aandrijving is een aandrijfapparaat met hoge precisie, en de juiste handmatige bedieningsmethode is cruciaal voor het verbeteren van de efficiëntie van de bediening van de apparatuur en het garanderen van de veiligheid van operators.

LEES VERDER
April 15,2024
Beschrijving van de AB PLC-serie

De PLC-5-controller bevindt zich in de centrale positie van het besturingssysteem, integreert de bestaande en toekomstige systemen via ethernet/ip, ControlNet en DeviceNet en verzorgt de interconnectie tussen SLC 500-, ControlLogix- en Micrologix-processors. Omdat de PLC-5-processor een ingebouwde netwerkverbinding heeft, maakt PLC-5 de besturingsstructuur flexibel genoeg om een economische verbinding tot stand te brengen tussen een breed scala aan apparatuur.   De minimale configuratie van een PLC-5/1771-besturingssysteem omvat een programmeerbare controllermodule en enkele invoer- en uitvoermodules en voedingsmodules die in een rek zijn geïnstalleerd. De controller met communicatiepoort kan naar wens worden geselecteerd. PLC-5 kan maximaal 512 in- en uitgangspunten bereiken. Alle PLC-5-processors hebben externe I/O-interfaces. Sommige PLC-5-processors hebben lokaal uitgebreide I/O-interfaces. Sommige PLC-5-processors hebben lokaal uitgebreide I/O-interfaces. Sommige PLC-5-processors hebben een ControlNet-communicatie-interface. Als u een DeviceNet I/O-scannerpoort voor het systeem wilt leveren, moet u een DeviceNet-scannermodule (1771-SDN) toevoegen.   PLC-5 is een groot, stabiel en vroeg product van Rockwell Automation Wereldwijd werken meer dan 450.000 sets PLC-5 en meer dan 10000000 PLC-5 1771 i/o-modules stabiel. PLC-5 heeft een module MTBF-index van meer dan 400.000 uur. Het PLC-5 hot standby-systeem kan worden gebruikt voor gelegenheden waarbij hoge eisen aan de besturingsveiligheid worden gesteld.   De afgelopen jaren heeft PLC-5 ControlNet, DeviceNet, ethernet/ip en andere industriële netwerkinterfacefuncties toegevoegd.   PLC-5-controllers kunnen worden onderverdeeld in de volgende categorieën:   1. Klassieke PLC-5-controller Er zijn verschillende CPU-modellen: Bestelnummer van het product (model) dat overeenkomt met de naam van de processor PLC-5/10 1785-LT4 PLC-5/12 1785-LT3 PLC-5/15 1785-LT PLC-5/25 1785-LT2   2. Verbeterde PLC-5-controller Er zijn verschillende CPU-modellen: 1785-L11B, 1785-L20B, 1785-L30B, 1785-L40B, 1785-L60B, 1785-L80B DH+ of (en) externe input/output-communicatie-interface (Remote I/O) is doorgaans aanwezig.   3. Ethernet PLC-5-controller Er zijn verschillende CPU-modellen: 1785-L20E, 1785-L40E, 1785-L80E Voor de bovengenoemde drie CPU's is de Ethernet-interface een ingebouwde standaardconfiguratie. DH+ of Remote I/O-interface is ook aanwezig   4. Besturingsnetwerk PLC-5-controller Er zijn verschillende CPU-modellen: 1785-L20C15, 1785-L40C15, 1785-L46C15, 1785-L80C15. De bovenstaande vier CPU's hebben een ingebouwde ControlNet-netwerkcommunicatiefunctie en bieden ook dh+ en externe invoer/uitvoer-communicatieverbindingsfuncties.   5. Beschermende PLC-5-controller Er zijn verschillende CPU-modellen: 1785-L26B、1785-L46B、1785-L46C15、1785-L86B。 Met de veilige controller kan de gebruiker toegang instellen tot "kritieke" of "privé" programmagebieden, beveiligde geheugengebieden, beveiligde in- en uitgangen, enz., en kan beperken ook de werking van de controller. Gebruikers kunnen door programmeersoftware worden geclassificeerd en beheerd, zodat ze verschillende systeemrechten hebben.   Met uitzondering van de klassieke PLC-5-controller zijn de bovenstaande vijf controllers allemaal uitgerust met een 25-pins seriële communicatiepoort.

LEES VERDER
April 11,2024
HONEYWELL DCS-systeem

HONEYWELL DCS System Experion_ PKS C300-systeemkaart   Cc-pcf901 PWA-module, besturingsfirewall 9 G3 CC C300 firewallmodule Cc-pcnt01 PWA-module, C300-besturingsprocessor C300-controllermodule Cc-tcf901 PWA, CNTRL firewall iota 8 poort 1 uplink C300 firewall-backplane Cc-tcnt01 PWA, C300-besturingsprocessor iota CC C300-controller-backplane Cc-scmb02 module, geheugenback-up C300 C300 geheugenbatterijmodule (met batterij) 51199942-300 batterijpakket C300 geheugen-achterbatterijpakket Cc-pwrr01 voedingseenheid, rood 20A zonder BBU-kast, redundante voeding, geen back-upbatterijrek 51199929-100 PWA-voedingsmodule Cc-paix01 PWA-module, HLAI G3 CE CC AI-module Cc-paih01 PWA-module, Hart HLAI G3 CE CC analoge ingangsmodule (met HART-protocol) Cc-taix11 PWA, AI iota rood 16 12 inch CE CC redundante analoge ingangsmodule backplane Cc-taix01 PWA, AI iota 16 6 inch CE Basisplaat CC analoge ingangsmodule Cc-paox01 PWA-module, Ao g3ce CC Ao-module Cc-paoh01 PWA-module, Hart Ao G3 CE CC analoge uitgangsmodule (met HART-protocol) Cc-taox11 PWA, Ao iota rood 16 12 inch CE CC redundante analoge uitgangsmodule backplane Cc-taox01 PWA, Ao iota 16 6 inch CE Basisplaat CC analoge uitgangsmodule Cc-pdil01 PWA-module, di 24V IO G3 CE CC Di-module Cc-pdis01-module, disoe 24V ASSY G3 24V digitale gebeurtenisserie-ingangsmodule Cc-tdil01 PWA, di 24VAC iota 32 24V digitale ingangsmodule backplane Cc-tdil11 PWA, di 24V iota rood 32 24V digitale ingangsmodule backplane (redundantie) Cc-pdob01 PWA-module, doe 24V IO G3 CE CC doe-module Cc-tdob01 PWA, do 24V bus iota 32 24V digitale uitgangsmodule backplane Cc-tdob11 PWA, do 24V bus iota rood 32 24V digitale uitgangsmodule backplane (redundantie) Cc-paim01 PWA mod, llamax G3 CE CC analoge ingangsmodule op laag niveau Cc-taim01 PWA, PMIO LLMux iota 64pt CE CC laag niveau analoge ingangsmodule backplane 51305907-175 FTA, llmux2, RTD, CE, CC mc-tamr03 klemmenbord met lage thermische weerstand 51305890-175 FTA, LLMux TC, solid state, CC, CE mc-tamt03 laag niveau thermokoppelingang 32-punts meerkanaals scannend klemmenbord, uitgerust met mc-plamx02 IOP 51190582-150 voor cc-tdil11, 01, cc-pdob11, 01 verzekering 51199947-275 ventilatormontageset, 230VAC, EC, CC kastventilator

LEES VERDER
December 26,2023
ABB Compact 800-controller

Wisselstroom 800M CPU-module Verschillende CPU-modules kunnen verschillende functies, verwerkingscapaciteit, geheugen en redundantie-ondersteuning bieden. Elke CPU-module is uitgerust met een of meer Ethernet-poorten om gegevens uit te wisselen met verschillende controllers of om te communiceren met operators, ingenieurs, managers en applicaties op een hoger niveau. Wanneer beschikbaarheid het belangrijkst wordt, kunnen deze Ethernet-poorten redundant worden geconfigureerd. Elke CPU-module is ook uitgerust met twee RS-232C-poorten, die point-to-point gegevens kunnen uitwisselen met programmeer-/debuggingtools of systemen en apparaten van derden.   Com- en I/O-module Voor elke CPU-module kunnen meerdere communicatie- en I/O-modules worden toegevoegd, zoals: ·Extra RS-232C-poorten ·PROFIBUS DPDP - V1-interface ·ABB INSUM-interface ·MasterBus 300-businterface ·S100-interface ·S800L- en S800-modules

LEES VERDER
April 04,2024
Yokogawa CPU-modules

Yokogawa CPU-modules: SCP401, SCP451, SCP461, CP401, CP451, CP461, CP471, CP345, CP701, CP703   Het integreert naadloos gedistribueerde besturingssystemen (DCS) en veiligheidsinstrumentatiesystemen (SIS), vereenvoudigt het ontwerp van de fabrieksautomatisering en verbetert de integratie van apparatuur.   Traditioneel zijn DCS en SIS twee onafhankelijke systemen. Elk systeem vereist zijn eigen communicatieplatform en hardwarestructuur. Onder dergelijke omstandigheden is het noodzakelijk om veel technische tijd, mankracht en materiële middelen te besteden om de optimale werking van de fabriek te realiseren.   Voordelen: levering Yokogawa DCS-kaart / module / PLC, sonde / sensor / kabel (sommige producten zijn verkrijgbaar tegen betaalbare prijzen)

LEES VERDER
Abonneren

Lees verder, blijf op de hoogte, abonneer u en wij heten u van harte welkom om ons te vertellen wat u ervan vindt.

indienen

auteursrechten 2024 @ Xiamen Wusu Network Technology Co., Ltd. .Alle rechten voorbehouden .Sitemap | bloggen | XML | Privacybeleid NETWERK ONDERSTEUND

laat een bericht achter

laat een bericht achter
Als u geïnteresseerd bent in onze producten en meer details wilt weten, laat dan hier een bericht achter, wij zullen u zo snel mogelijk antwoorden.
indienen

Thuis

Producten

whatsApp

contact