Wat is het verschil tussen servo- en frequentieconversie?
Aug 19, 2024
Wat is een frequentieomvormer Volgens de definitie van "GB/T 2900.1-2008 Basisvoorwaarden voor elektrotechniek": Frequentieomvormer verwijst naar een elektrische-energieomvormer die de frequentie verandert die verband houdt met elektrische energie. Eenvoudige frequentieomvormers kunnen alleen de snelheid van AC-motoren aanpassen. Het kan een open of gesloten lus zijn, afhankelijk van de besturingsmethode en de frequentieomvormer. Dit is de traditionele V/F-besturingsmethode. Nu hebben veel frequentieomvormers wiskundige modellen opgesteld om de UVW3-fasen van het statormagnetische veld van AC-motoren om te zetten in twee stroomcomponenten die het motortoerental en koppel kunnen regelen. Nu gebruiken de meeste bekende merken frequentieomvormers die koppelregeling kunnen uitvoeren deze methode om het koppel te regelen. De output van elke UVW-fase moet worden opgeteld met een stroomdetectieapparaat met molair effect. Na bemonstering en feedback wordt de PID-aanpassing van de stroomlus met negatieve feedback met gesloten lus gevormd; De frequentieomvormer van ABB heeft een technologie voor directe koppelregeling voorgesteld die verschilt van deze methode. Raadpleeg de relevante informatie voor meer informatie. Op deze manier kunnen zowel de snelheid als het koppel van de motor worden geregeld, en is de nauwkeurigheid van de snelheidsregeling beter dan v/f-regeling. Encoderfeedback kan worden toegevoegd of niet. Wanneer dit wordt toegevoegd, zijn de regelnauwkeurigheid en responseigenschappen veel beter. Wat is een servo Driver: Gebaseerd op de ontwikkeling van frequentieconversietechnologie heeft de servodriver nauwkeurigere besturingstechnologie en algoritmische bewerkingen geïmplementeerd in de huidige lus, snelheidslus en positielus (de frequentieomvormer heeft deze lus niet) in de driver dan in de algemene frequentie conversie. Het is ook qua functies veel krachtiger dan traditionele servo's. Het belangrijkste punt is dat het een nauwkeurige positiecontrole kan uitvoeren. De snelheid en positie worden bestuurd door de pulssequentie die door de bovenste controller wordt verzonden (sommige servo's hebben uiteraard geïntegreerde besturingseenheden of stellen parameters zoals positie en snelheid rechtstreeks in de bestuurder in via buscommunicatie). Het interne algoritme van de driver, snellere en nauwkeurigere berekeningen en beter presterende elektronische apparaten maken hem superieur aan de frequentieomvormer. Motor: Het materiaal, de structuur en de verwerkingstechnologie van servomotoren zijn veel beter dan die van AC-motoren aangedreven door omvormers (algemene AC-motoren of verschillende soorten motoren met variabele frequentie, zoals constant koppel en constant vermogen). Dat wil zeggen dat wanneer de bestuurder een voeding levert met snel veranderende stroom, spanning en frequentie, de servomotor overeenkomstige actieveranderingen kan produceren afhankelijk van de veranderingen in de voeding. De responskarakteristieken en de weerstand tegen overbelasting zijn veel beter dan die van AC-motoren aangedreven door omvormers. Het serieuze verschil in motoren is ook de fundamentele reden voor het prestatieverschil tussen de twee. Het is dus niet zo dat de omvormer geen vermogenssignaal kan afgeven dat zo snel verandert, maar dat de motor zelf niet kan reageren. Wanneer het interne algoritme van de omvormer is ingesteld, wordt daarom een overeenkomstige overbelastingsinstelling uitgevoerd om de motor te beschermen. Zelfs als de uitgangscapaciteit van de omvormer niet is ingesteld, is deze natuurlijk nog steeds beperkt. Sommige omvormers met uitstekende prestaties kunnen servomotoren rechtstreeks aandrijven! Een belangrijk verschil tussen servo- en frequentieconversie Frequentieconversie kan worden uitgevoerd zonder encoders, maar servo's moeten encoders hebben voor elektronische commutatie. De technologie van AC-servo zelf is gebaseerd op en past frequentieconversietechnologie toe. Dit wordt bereikt door de besturingsmethode van DC-motoren te imiteren door middel van frequentieconversie PWM op basis van DC-motorservobesturing. Met andere woorden, AC-servomotoren moeten frequentieconversie hebben: frequentieconversie is bedoeld om de 50, 60HZ AC-stroom eerst in gelijkstroom te corrigeren en deze vervolgens om te zetten in een frequentie-instelbare golfvorm vergelijkbaar met sinus- en cosinus-pulserend vermogen via verschillende transistors met regelbare poorten (IGBT, IGCT, enz.) via draaggolffrequentie en PWM-regeling. Omdat de frequentie instelbaar is, kan ook de snelheid van de AC-motor worden aangepast (n=60f/2p, n snelheid, f frequentie, p poolpaarnummer).